Anthracnose of Macleaya cordata Caused by Colletotrichum aenigma in China

Plant Dis. 2023 Nov 30. doi: 10.1094/PDIS-08-23-1478-PDN. Online ahead of print.

Abstract

Macleaya cordata (Willd.) R. Br. is a perennial herbaceous medicinal plant (Papaveraceae) commercially cultivated in China which has been studied for detumescence, detoxification, and insecticidal effect (Lin et al. 2018). In August 2021, anthracnose was observed in 2-year-old M. cordata plants in Benxi county, northeast China (41°45'48″N, 123°69'15″E). Dozens of irregular reddish-brown spots (3-11 mm) were observed on each diseased leaf. The lesions were covered with a layer of gray-white mycelia. As the disease progressed, the spots became necrosis and perforation or they would merged into large lesions, ultimately resulting in wilted leaves (Fig. 1). More than 33% of the plants in a 16-ha field were infected in 2021. The diseased leaves were collected and cut into 3-8 mm pieces, surface-disinfested by immersing them into 1% NaOCl for 2 min, and rinsed three times with sterile distilled water. They were then dried with sterilized absorbent paper, placed on PDA medium amended with chloramphenicol (40 mg/L), and incubated in darkness at 25°C with a 12-h photoperiod. Twenty isolates (BLH1 to 20) were obtained and purified using a single-spore method. Isolate BLH12 was identified and used for the pathogenicity test. Colonies were sparsely fluffy with smooth edges, and gradually became gray to pale orange from the initial white. The underside of the colonies was pale orange towards the center. Conidia were single-celled, cylindrical, and transparent with broadly blunt ends, measuring (15.13 ± 1.14) × (5.80 ± 0.60) μm (n=50). Appressoria were single-celled, brown-to-dark brown, usually elliptical or irregular, and sometimes lobed. Setae were not observed. The isolate was initially identified as Colletotrichum gloeosporioides complex (Prihastuti et al. 2009). The identification was confirmed as described previously (Weir et al. 2012). The rDNA internal transcribed spacer region (OP415560), the glyceraldehyde-3-phosphate dehydrogenase (OP433642), chitin synthase (OP433643), calmodulin (OP433644), actin (OP433645), glutamine synthetase (OP433646), β-tubulin (OP433647), and superoxide dismutase (OP433648) gene sequences were obtained (Carbone & Kohn 1999; Weir et al. 2012), and BLAST searches revealed 99-100% homology with the type culture ICMP 18608 (JX010244, JX010044, JX009683, JX009443, JX009744, JX010078, JX010389, and JX010311). A phylogenetic analysis of combining all loci indicated BLH12 and the type strain of C. aenigma were clustered in one group (Fig. 2). Based on the basis of morphological characteristics and phylogenetic relationships, BLH12 was identified as C. aenigma. For the pathogenicity test, healthy 2-year-old plants were sprayed with a BLH12 spore suspension (1 × 105/mL). Control plants were sprayed with sterile water.There were three replicates (five plants each) per treatment. All plants were incubated at 25°C (12-h photoperiod and 86% relative humidity) and examined after 7 days. The experiment was repeated twice. The inoculated plants showed lesions on the leaf surface, similar to those in the field, whereas the control plants were asymptomatic. The pathogen was successfully reisolated and identified as the methods mentioned above. This fungus reportedly infects the leaves of many woody plants in China (Wang et al. 2020; Zhang et al. 2021). This is the first report of C. aenigma causing anthracnose on M. cordata, which will provide an guideline for developing effective field control practices for the disease.

Keywords: Causal Agent; Crop Type; Field crops; Fungi; Pathogen diversity; Subject Areas; other.