Defect and Donor Manipulated Highly Efficient Electron-Hole Separation in a 3D Nanoporous Schottky Heterojunction

JACS Au. 2023 Oct 21;3(11):3127-3140. doi: 10.1021/jacsau.3c00482. eCollection 2023 Nov 27.

Abstract

Given the rapid recombination of photogenerated charge carriers and photocorrosion, transition metal sulfide photocatalysts usually suffer from modest photocatalytic performance. Herein, S-vacancy-rich ZnIn2S4 (VS-ZIS) nanosheets are integrated on 3D bicontinuous nitrogen-doped nanoporous graphene (N-npG), forming 3D heterostructures with well-fitted geometric configuration (VS-ZIS/N-npG) for highly efficient photocatalytic hydrogen production. The VS-ZIS/N-npG presents ultrafast interfacial photogenerated electrons captured by the S vacancies in VS-ZIS and holes neutralization behaviors by the extra free electrons in N-npG during photocatalysis, which are demonstrated by in situ XPS, femtosecond transient absorption (fs-TA) spectroscopy, and transient-state surface photovoltage (TS-SPV) spectra. The simulated interfacial charge rearrangement behaviors from DFT calculations also verify the separation tendency of photogenerated charge carriers. Thus, the optimized VS-ZIS/N-npG 3D hierarchical heterojunction with 1.0 wt % N-npG exhibits a comparably high hydrogen generation rate of 4222.4 μmol g-1 h-1, which is 5.6-fold higher than the bare VS-ZIS and 12.7-fold higher than the ZIS without S vacancies. This work sheds light on the rational design of photogenerated carrier transfer paths to facilitate charge separation and provides further hints for the design of hierarchical heterostructure photocatalysts.