Metric and fault-tolerant metric dimension for GeSbTe superlattice chemical structure

PLoS One. 2023 Nov 30;18(11):e0290411. doi: 10.1371/journal.pone.0290411. eCollection 2023.

Abstract

The concept of metric dimension has many applications, including optimizing sensor placement in networks and identifying influential persons in social networks, which aids in effective resource allocation and focused interventions; finding the source of a spread in an arrangement; canonically labeling graphs; and inserting typical information in low-dimensional Euclidean spaces. In a graph G, the set S⊆V(G) of minimum vertices from which all other verticescan be uniquely determined by the distances to the vertices in S is called the resolving set. The cardinality of the resolving set is called the metric dimension. The set S is called fault-tolerant resolving set if S\{v} is still a resolving set of G. The minimum cardinality of such a set S is called fault-tolerant metric dimension of G. GeSbTe super lattice is the latest chemical compound to have electronic material that is capable of non-volatile storing phase change memories with minimum energy usage. In this work, we calculate the resolving set (fault tolerant resolving set) to find the metric dimension(fault-tolerant metric dimension) for the molecular structure of the GeSbTe lattice. The results may be useful in comparing network structure and categorizing the structure of the GeSbTe lattice.

Grants and funding

The author(s) received no specific funding for this work.