Imrecoxib attenuates bleomycin-induced pulmonary fibrosis in mice

Heliyon. 2023 Nov 3;9(11):e20914. doi: 10.1016/j.heliyon.2023.e20914. eCollection 2023 Nov.

Abstract

Idiopathic pulmonary fibrosis (IPF) is an incurable chronic progressive disease with a low survival rate and ineffective therapeutic options. We examined the effects of imrecoxib, a nonsteroidal anti-inflammatory drug, on experimental pulmonary fibrosis. The mouse IPF model was established by intratracheal instillation of bleomycin. From Day 0 to Day 13, the mice were orally administered imrecoxib (100 mg/kg) and pirfenidone (200 mg/kg) daily, and from Day 7 to Day 13, the mice were orally administered pirfenidone and imrecoxib daily. The tissues were dissected on the 14th day. Mouse body weight was measured, and histopathological examination and hydroxyproline content analysis confirmed that the administration of imrecoxib exerted a similar effect to pirfenidone. Compared with bleomycin-induced mice, imrecoxib-treated mice showed significantly reduced inflammatory factor expression (IL-1 and TNF-α) and inflammatory cell numbers (macrophages, lymphocytes, and neutrophils) in BALF (bronchoalveolar lavage fluid). Our experiment tested the ability of imrecoxib to inhibit the signal pathway involved in gene expression induced by TGF-β1 in the NIH-3T3 cell line in vitro. Western blotting showed that imrecoxib (20 μM and 40 μM) inhibited the expression of fibronectin, type I collagen and CTGF. In addition, imrecoxib reduced the levels of p-ERK1/2. The changes in the expression of related proteins in mouse lung tissue were similar to those in cells. In summary, our findings suggested that the administration of imrecoxib prevented and treated murine IPF by inhibiting inflammation and the TGF-β1-ERK1/2 signaling pathway.

Keywords: ERK1/2; Idiopathic pulmonary fibrosis; Imrecoxib; Inflammation; TGF-β1.