Natural image restoration based on multi-scale group sparsity residual constraints

Front Neurosci. 2023 Nov 6:17:1293161. doi: 10.3389/fnins.2023.1293161. eCollection 2023.

Abstract

The Group Sparse Representation (GSR) model shows excellent potential in various image restoration tasks. In this study, we propose a novel Multi-Scale Group Sparse Residual Constraint Model (MS-GSRC) which can be applied to various inverse problems, including denoising, inpainting, and compressed sensing (CS). Our new method involves the following three steps: (1) finding similar patches with an overlapping scheme for the input degraded image using a multi-scale strategy, (2) performing a group sparse coding on these patches with low-rank constraints to get an initial representation vector, and (3) under the Bayesian maximum a posteriori (MAP) restoration framework, we adopt an alternating minimization scheme to solve the corresponding equation and reconstruct the target image finally. Simulation experiments demonstrate that our proposed model outperforms in terms of both objective image quality and subjective visual quality compared to several state-of-the-art methods.

Keywords: group sparsity residual; image restoration; low-rank regularization; multi-scale; non-local self-similarity (NSS).

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the National Natural Science Foundation of China (NSFC) (62071001), the Nature Science Foundation of Anhui (2008085MF192, 2008085MF183, 2208085QF206, and 2308085QF224), the Key Science Program of Anhui Education Department (KJ2021A0013), and was also supported by the China Postdoctoral Science Foundation (2023M730009).