Electrochemiluminescence Properties and Sensing Application of Zn(II)-Metal-Organic Frameworks Constructed by Mixed Ligands of Para Dicarboxylic Acids and 1,10-Phenanthroline

ACS Omega. 2023 Nov 7;8(46):43463-43473. doi: 10.1021/acsomega.3c02559. eCollection 2023 Nov 21.

Abstract

Four metal-organic frameworks (MOFs) were designed and prepared through a mixed-ligand strategy by controlling the combination of various dicarboxylic acid ligands with invariant center metal and o-phenanthroline heterocyclic ligand. The regulatory effects of ligand electronic band and crystal structure on the electrochemiluminescence (ECL) characteristics of MOFs were verified by experimental results and density functional theory (DFT) calculations. The flexible chain structure of MOF-2 promotes electron transfer between MOF electroactive free radicals and the co-reactant, making it show outstanding ECL characteristics among all of the four MOFs with the luminescence quantum efficiency 8.37 times that of tris(bipyridine)-ruthenium(II) ([Ru(bpy)3]2+). Meanwhile, a new ECL mechanism for MOF luminescent crystal materials with reactive oxygen species in solvents as a co-reactant in the aqueous aerobic environment has been proposed. MOF-2 was selected to construct an ECL sensor for the determination of glucose in human urine samples. This study provides a useful idea for the development and design of new luminescent molecular crystal materials.