Effect of different oxygen precursors on alumina deposited using a spatial atomic layer deposition system for thin-film encapsulation of perovskite solar cells

Nanotechnology. 2023 Dec 15;35(9). doi: 10.1088/1361-6528/ad1059.

Abstract

An atmospheric-pressure spatial atomic layer deposition system operated in atmospheric-pressure spatial chemical vapor deposition conditions is employed to deposit alumina (AlOx) thin films using trimethylaluminum and different oxidants, including water (H2O), hydrogen peroxide (H2O2), and ozone (O3). The impact of the oxygen precursor on the structural properties of the films and their moisture-barrier performance is investigated. The O3-AlOxfilms, followed by H2O2-AlOx, exhibit higher refractive indexes, lower concentrations of OH- groups, and lower water-vapor-transmission rates compared to the films deposited using water (H2O-AlOx). The AlOxfilms are then rapidly deposited as thin-film-encapsulation layers on perovskite solar cells at 130 °C without damaging the temperature-sensitive perovskite and organic materials. The stability of thep-i-nformamidinium methylammonium lead iodide solar cells under standard ISOS-D-3 testing conditions (65 °C and 85% relative humidity) is significantly enhanced by the encapsulation layers. Specifically, the O3-AlOxand H2O2-AlOxlayers result in a six-fold increase in the time required for the cells to degrade to 80% of their original efficiency compared to un-encapsulated cells.

Keywords: alumina (Al2O3); atmospheric-pressure spatial atomic layer deposition (AP-SALD); hydrogen peroxide (H2O2); ozone (O3); perovskite solar cells (PSCs); thin film encapsulation (TFE).