The dynamic recruitment of LAB proteins senses meiotic chromosome axis differentiation in C. elegans

J Cell Biol. 2024 Feb 5;223(2):e202212035. doi: 10.1083/jcb.202212035. Epub 2023 Nov 27.

Abstract

During meiosis, cohesin and meiosis-specific proteins organize chromatin into an axis-loop architecture, coordinating homologous synapsis, recombination, and ordered chromosome segregation. However, how the meiotic chromosome axis is assembled and differentiated with meiotic progression remains elusive. Here, we explore the dynamic recruitment of two long arms of the bivalent proteins, LAB-1 and LAB-2, in Caenorhabditis elegans. LAB proteins directly interact with the axis core HORMA complexes and weak interactions contribute to their recruitment. LAB proteins phase separate in vitro, and this capacity is promoted by HORMA complexes. During early prophase, synapsis oppositely regulates the axis enrichment of LAB proteins. After the pachytene exit, LAB proteins switch from a reciprocal localization pattern to a colocalization pattern, and the normal dynamic pattern of LAB proteins is altered in meiotic mutants. We propose that LAB recruitment senses axis differentiation, and phase separation of meiotic structures helps subdomain establishment and accurate segregation of the chromosomes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Caenorhabditis elegans Proteins* / genetics
  • Caenorhabditis elegans Proteins* / metabolism
  • Caenorhabditis elegans* / genetics
  • Caenorhabditis elegans* / metabolism
  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism
  • Chromosomal Proteins, Non-Histone* / genetics
  • Chromosomal Proteins, Non-Histone* / metabolism
  • Chromosome Pairing / genetics
  • Chromosome Segregation
  • Chromosomes / genetics
  • Chromosomes / metabolism
  • Meiosis*

Substances

  • Caenorhabditis elegans Proteins
  • Cell Cycle Proteins
  • LAB-1 protein, C elegans
  • Chromosomal Proteins, Non-Histone