Gandouling alleviates nerve injury through PI3K/Akt/FoxO1 and Sirt1/FoxO1 signaling pathway to inhibit autophagy in the rats model of Wilson's disease

Brain Behav. 2023 Dec;13(12):e3325. doi: 10.1002/brb3.3325. Epub 2023 Nov 27.

Abstract

Introduction: Previous studies have shown that Gandouling (GDL) may alleviate the nerve damage caused by Wilson's disease (WD) by inhibiting the autophagy of nerve cell mitochondria. However, its mechanisms are still unclear. Revealing the therapeutic mechanism of GDL is beneficial for its clinical application and provides theoretical support for the development of new formulations for treating WD.

Method: This time we found that the oxidative stress level in the body of the copper-overloaded WD rates increased, neurons in the hippocampus were damaged, and autophagy occurred. GDL reversed these situations and significantly improved the learning, memory, and spatial cognitive abilities of the high-copper-loaded WD rates. After GDL intervention, the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated serine-threonine protein kinase (AKT), and phosphorylated forkhead box protein O1 (FoxO1) significantly increased, whereas FoxO1 in the nucleus decreased and phosphorylated FoxO1 in the cytoplasm also significantly raised. In addition, the expression of Sirt1 significantly declined, and Ac-FoxO1 in the nucleus also significantly increased.

Results: These data indicated that GDL may promote the phosphorylation of FoxO1 and promote its nucleation by activating the PI3K/AKT/FoxO1 signaling pathway and inhibit Ac-FoxO1 hydrolysis in the nucleus through the Sirt1/FoxO1 signaling pathway to suppress the transcriptional activity of FoxO1.

Conclusion: Furthermore, it inhibited the expression of autophagy genes Atg12 and Gabarapl1. In summary, our work provides new insights into the potential mechanisms of GDL repairing WD neuronal damage through autophagy pathways.

Keywords: Gandouling; Wilson disease; nerve injury; signaling pathway.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autophagy
  • Copper
  • Forkhead Box Protein O1 / genetics
  • Forkhead Box Protein O1 / metabolism
  • Hepatolenticular Degeneration*
  • Phosphatidylinositol 3-Kinase* / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Rats
  • Signal Transduction
  • Sirtuin 1 / metabolism

Substances

  • Phosphatidylinositol 3-Kinase
  • Forkhead Box Protein O1
  • Proto-Oncogene Proteins c-akt
  • Phosphatidylinositol 3-Kinases
  • Sirtuin 1
  • Copper
  • Sirt1 protein, rat