Psychrobacillus antarcticus sp. nov., a psychrotolerant bioemulsifier producer isolated from King George Island, Antarctica

Int J Syst Evol Microbiol. 2023 Nov;73(11). doi: 10.1099/ijsem.0.006181.

Abstract

A Gram-stain-positive rod, psychrotolerant, aerobic and bioemulsifier-producing strain, denoted as Val9T, was isolated from soil sampled at Vale Ulman, King George Island, Antarctica. The strain grew at up to 30 °C (optimum, 15 °C), at pH 6-9 (optimum, pH 8) and with up to 5 % w/v NaCl (optimum, 3 %). The strain was motile and positive for catalase, oxidase and H2S. It did not hydrolyse starch, casein or gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Val9T belonged to the genus Psychrobacillus and was closely related to Psychrobacillus psychrotolerans DSM 11706T (99.9 % similarity), Psychrobacillus psychrodurans DSM 11713T (99.8 %) and Psychrobacillus glaciei PB01T (99.2 %). Digital DNA-DNA hybridization and average nucleotide identity values were lower than 37.3 and 85.5 %, respectively, with the closest phylogenetic neighbours. The DNA G+C content of strain Val9T calculated from the complete genome sequence was 36.6 mol%. The predominant cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and anteiso-C17 : 1ω11c. Menaquinone-8 was the major respiratory quinone. The peptidoglycan type was A4β l-Orn-d-glu. The novel strain contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol as predominant polar lipids. Based on 16S rRNA phylogenetic and multilocus sequence analyses (recA, rpoB and gyrB), as well as phylogenomic, chemotaxonomic and phenotypic tests, we demonstrate that strain Val9T represents a novel species of the genus Psychrobacillus, for which the name Psychrobacillus antarcticus sp. nov. is proposed. The type strain is Val9T (=DSM 115096T=CCGB 1952T=NRRL B-65674T).

Keywords: Psychrobacillus antarcticus; new psychrotolerant Psychrobacillus species; taxonomy.

MeSH terms

  • Antarctic Regions
  • Bacterial Typing Techniques
  • Base Composition
  • DNA, Bacterial / genetics
  • Fatty Acids* / chemistry
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Vitamin K 2 / chemistry

Substances

  • Fatty Acids
  • RNA, Ribosomal, 16S
  • DNA, Bacterial
  • Vitamin K 2