4-Isocyanoindole-2'-deoxyribonucleoside (4ICIN): An Isomorphic Indole Nucleoside Suitable for Inverse Electron Demand Diels-Alder Reactions

Tetrahedron Lett. 2023 Nov 30:132:154807. doi: 10.1016/j.tetlet.2023.154807. Epub 2023 Oct 25.

Abstract

Isomorphic nucleosides are powerful tool compounds for interrogating a variety of biological processes involving nucleosides and nucleic acids. We previously reported a fluorescent isomorphic indole nucleoside called 4CIN. A distinguishing molecular feature of 4CIN is the presence of a 4-cyano moiety on the indole that functions as the nucleobase. Given the known chemical reactivity of isonitriles with tetrazines through [4+1]-cycloaddition chemistry, we investigated whether conversion of 4CIN to the corresponding isonitrile would confer a useful chemical probe. Here we report the synthesis of 4-isocyanoindole-2'-deoxyribonucleoside (4ICIN) and the propensity of 4ICIN to undergo inverse electron demand Diels-Alder cycloaddition with a model tetrazine.

Keywords: Bioorthogonal Labeling; Click Chemistry; Inverse Electron Demand Diels-Alder; Isomorphic; Nucleosides; [4+1] Cycloaddition.