A synonymous single nucleotide polymorphism (g.36417726C > A) in the Lama2 gene influencing fat deposition is associated with post-partum anestrus interval in Murrah buffalo

Gene. 2024 Feb 20:896:148032. doi: 10.1016/j.gene.2023.148032. Epub 2023 Nov 24.

Abstract

Postpartum absence of estrus exhibition known as postpartum anestrus interval (PPAI) for more than 90 days after calving is a concerning issue for dairy buffalo farmers' economy. The PPAI duration is influenced by both management practices and animal genetics. Investigating genetic markers associated with PPAI is crucial for incorporating them into marker-assisted selection programs. Towards this goal, our study focused on exploring potential genetic markers from early postpartum adipose tissue gene networks. We successfully identified 24 Single Nucleotide Polymorphisms (SNPs) within 9 candidate genes. In our initial analysis involving 100 buffaloes, we detected a significant association (P = 0.02267) between a specific synonymous SNP within the Lama2 gene (g.36417726C > A) and PPAI. This finding was subsequently validated (P = 0.02937) in a larger cohort of 415 buffaloes, where the SNP explained 1.36 % of the genetic variance. Intriguingly, buffaloes with the CC genotype of this SNP exhibited a PPAI that was 12.71 ± 3.21 days longer compared to buffaloes with AA and CA genotypes. To gain insight into the functional relevance of this SNP, a computational analysis was performed which indicated that the C allele of the SNP (g.36417726C > A) increased the stability of LAMA2 mRNA compared to the A allele. This computational prediction was corroborated by observing a significant increase (P = 0.01798) in Lama2 gene expression (greater than 8-fold) and higher fat percentage (P < 0.05) in adipose tissue of CC genotypes (48.78 ± 1.87 %) compared to AA genotypes (33.59 ± 4.5 %). Furthermore, we noted a significant (P < 0.05) upregulation of C/ebpβ, Pparγ, Fasn, C/ebpα, and Pnpla2 genes, along with the downregulation of Bmp2 and Ptch1 in CC genotypes as opposed to AA genotypes. This observation suggests the involvement of the Pparγ-mediated pathway in both adipogenesis and lipolysis within CC genotypes. In summary, our comprehensive analysis involving association and functional validation underscores the potential of the SNP (g.36417726C > A) within the Lama2 gene as a promising genetic marker against extended PPAI in Murrah buffalo.

Keywords: Adipogenesis; Lama2; Lipolysis; PPAI; RNA secondary structure; Synonymous polymorphism.

MeSH terms

  • Adipose Tissue
  • Anestrus
  • Animals
  • Buffaloes* / genetics
  • Female
  • Genetic Markers
  • Genotype
  • Humans
  • PPAR gamma / genetics
  • Polymorphism, Single Nucleotide*
  • Postpartum Period / genetics

Substances

  • Genetic Markers
  • PPAR gamma