Applying sludge hydrolysate as a carbon source for biological denitrification after composition optimization via red soil filtration

Water Res. 2024 Feb 1:249:120909. doi: 10.1016/j.watres.2023.120909. Epub 2023 Nov 21.

Abstract

Sludge hydrolysate, the byproduct generated during sludge hydrothermal treatment (HT), is a potential carbon source for biological denitrification. However, the refractory organic matters and the nutrient substances are unfavorable to the nitrogen removal. In this study, effects of HT conditions on the hydrolysate properties, and the hydrolysate compositions optimization via red soil (RS) filtration were investigated. At HT temperature of 160-220 °C and reaction time of 1-4 h, the highest dissolution rate of organics from sludge to hydrolysate achieved 70.1 %, while the acetic acid dominated volatile fatty acids (VFAs) was no more than 5.0 % of the total organic matter content. The NH4+-N and dissolved organic nitrogen (DON) were the main nitrogen species in hydrolysate. When the hydrolysate was filtered by RS, the high molecular weight organic matters, DON, NH4+ and PO43- were effectively retained by RS, while VFAs and polysaccharide favorable for denitrification were kept in the filtrate. When providing same COD as the carbon source, the filtrate group (Fi-Group) introduced lower concentrations of TN and humic substances but higher content of VFAs. This resulted in TN removal rate (57.0 %) and denitrification efficiency (93.6 %) in Fi-Group higher than those in hydrolysate group (Hy-Group), 39.4 % and 83.7 %, respectively. It is noticeable that both Hy- and Fi- Groups up-regulated most of denitrification functional genes, and increased the richness and diversity of denitrifying bacteria. Also, more denitrifying bacteria genera appeared, and their relative abundance increased significantly from 3.31 % in Control to 21.15 % in Hy- Group and 31.31 % in Fi-Group. This indicates that the filtrate is a more suitable carbon source for denitrification than hydrolysate. Moreover, the pH rose from 4.6 ± 0.14 to 6.5 ± 0.05, and the organic carbon, TN, TP and cation exchange capacity (CEC) of RS increased as well after being filtered, implying that the trapped compounds may have the potential to improve soil quality. This study provides a new insight for hydrolysate application according to its composition characteristics, and helps make the most use of wasted sludge.

Keywords: Biological nitrogen removal; Carbon source; Filtration; Hydrolysate; Red soil.

MeSH terms

  • Bacteria
  • Bioreactors*
  • Carbon
  • Denitrification
  • Fatty Acids, Volatile
  • Fermentation
  • Nitrogen
  • Sewage* / chemistry
  • Soil

Substances

  • Sewage
  • Carbon
  • Soil
  • Fatty Acids, Volatile
  • Nitrogen