Formulation and validation of probioticated foxtail millet laddu as a source of antioxidant for biological system using response surface methodology

Braz J Microbiol. 2024 Mar;55(1):647-661. doi: 10.1007/s42770-023-01188-8. Epub 2023 Nov 25.

Abstract

Probiotics play a critical role in supporting a healthy gut microbiome, which significantly impacts overall health and well-being. While there has been an increase in the availability of probiotic foods in recent years, there may still be limited options and accessibility in certain regions. This study focused on formulating a traditional Indian sweet called laddu enriched with millet and Lactobacillus acidophilus. The formulation of laddu ingredients was optimized using Design Expert software to create an optimal product for testing. The probiotic Lactobacillus acidophilus culture was incorporated into the laddu in three forms: lyophilized, microencapsulated powder, and natural curd. The probiotic foxtail laddu was selected based on specific criteria such as color, odor, and texture. The nutritional analysis revealed that the laddu contained approximately 64.46 g of carbohydrates, 15.13 g of protein, and 5.06 g of fat per 100 g of laddu. A microbial count analysis was performed over a two-month storage period to assess the viability of the incorporated Lactobacillus acidophilus. The results showed that the lyophilized and microencapsulated culture demonstrated good viability, with counts of 6.10 ± 0.09 log CFU/g and 7.43 ± 0.02 log CFU/g, respectively, when stored at 4 °C. In comparison, storage at room temperature resulted in counts of 5.41 ± 0.08 log CFU/g and 6.97 ± 0.02 log CFU/g at the end of the storage period. Based on the findings, the probiotic millet laddu developed in this study has the potential to be a value-added food product that can enhance the overall health of consumers. Incorporating probiotics into traditional food items like laddu offers a convenient and enjoyable way to promote gut health and improve the product's nutritional value.

Keywords: Kinetics; Microencapsulation; Millets; Organoleptic; Probiotics.

MeSH terms

  • Antioxidants
  • Lactobacillus
  • Lactobacillus acidophilus
  • Probiotics*
  • Setaria Plant*

Substances

  • Antioxidants