Monitoring Changes in the Volatile Profile of Ecuadorian Cocoa during Different Steps in Traditional On-Farm Processing

Plants (Basel). 2023 Nov 20;12(22):3904. doi: 10.3390/plants12223904.

Abstract

The present work was conducted to evaluate the volatile profile of Ecuadorian Forastero, CCN-51, ETT103 and LR14 cocoa beans during traditional fermentation in laurel wood boxes followed by a sun-drying process. Fifty-six volatiles were identified with HS-SPME-GC-MS. Aldehydes, alcohols and ketones were the compounds that mainly characterized the fresh cocoa. The main compounds formed during the anaerobic fermentation step were esters and acids, while in the aerobic fermentation step, an increase in ester-, aldehyde- and acid-type compounds was observed. Finally, after the drying step, a notable increase in the acid (i.e., acetic acid) content was the predominant trend. According to the genotypes, ETT103 presented high contents of terpenes, alcohols, aldehydes and ketones and low contents of unfavorable acid compounds. The CCN-51 and LR14 (Trinitarian) varieties stood out for their highest amounts in acids (i.e., acetic acid) at the end of primary processing. Finally, the Forastero cocoa beans were highlighted for their low acid and high trimethylpyrazine contents. According to the chemometric and Venn diagram analyses, ETT-103 was an interestingly high-aromatic-quality variety for cocoa gourmet preparations. The results also showed the need for good control of the processing steps (using prefermentative treatments, starter cultures, etc.) on Ecuadorian genotypes of Trinitarian origin.

Keywords: HS-SPME-GC–MS; Theobroma cacao L.; bulk cocoa; chemometrics; fine-flavor cocoa; primary processing; volatile compounds.