Enhancing the multifunctional properties of cellulose fabrics through in situ hydrothermal deposition of TiO2 nanoparticles at low temperature for antibacterial self-cleaning under UV-Vis illumination

Int J Biol Macromol. 2024 Jan;256(Pt 1):128321. doi: 10.1016/j.ijbiomac.2023.128321. Epub 2023 Nov 23.

Abstract

This study aimed to improve the multifunctional properties (including photocatalysis, stability reusability, self-cleaning, antibacterial effects, and thermal radiation shielding) of cellulose fabrics through incorporation of TiO2 nanoparticles. To achieve this, anatase TiO2 nanoparticles were synthesized in situ and deposited onto cotton fabrics through hydrothermal method. The presence of TiO2 nanoparticles in cellulose fabrics greatly enhanced the photocatalytic efficiency and adsorption range and did not damage the fabric fibers. The TiO2-coated cotton exhibited an outstanding photocatalytic efficiency, with dye removal rates of 92.20 % ± 0.015 % and 99.68 % ± 0.002 % under UV-A and visible illumination, respectively. In addition, the material exhibited thermal radiation shielding properties, in which no heat absorption was observed within 60 min at 40 °C-70 °C. To further enhance the hydrophobicity, the TiO2-coated cotton was surface-modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS). The resulting PFDTS/TiO2-coated cotton was superhydrophobic with a water contact angle of 156.50° ± 0.05° with a sliding angle of 4.33° ± 0.47° and roughness of 67.35 nm. The superhydrophobicity of the PFDTS/TiO2-coated cotton also facilitated self-cleaning through water injection to remove soil impurities. Furthermore, the PFDTS/TiO2-coated cotton exerted antibacterial effects against gram-negative (Escherichia coli) and gram-positive (Staphylococcus aureus) bacteria under UV-A or visible illumination. These nanocomposite fabrics with multifunctional properties have potential for industrial, military, and medical applications.

Keywords: Antibacterial; Photocatalytic activity; Titanium dioxide.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Cellulose / chemistry
  • Cotton Fiber*
  • Lighting
  • Nanoparticles* / chemistry
  • Temperature
  • Water

Substances

  • Cellulose
  • Anti-Bacterial Agents
  • Water