Integrated Performance Evaluation of Aerogel-Based Fibre-Enhanced Thermal Renders Applied on Building Walls

Gels. 2023 Nov 13;9(11):898. doi: 10.3390/gels9110898.

Abstract

In this work, aerogel renders were enhanced with fibres for use in new building walls, emphasising a Mediterranean climate. The main novelty of the study relies on an integrated evaluation of the aerogel-based fibre-enhanced thermal renders from environmental, energy and economic approaches. Therefore, optimum insulation thicknesses, life cycle savings, payback periods, abiotic depletion potential from fossil fuels (ADP-ff) and global warming potential (GWP) impacts were quantified as a function of the energy consumption. The cost optimisation of aerogel-based renders enabled a reduction from 2477.4 to 1021.7 EUR∙m-3 for the reference formulation, and the sisal-optimised render led to the best-integrated performance. A higher DD* (degree-days equivalent) led to higher optimum thicknesses (the Azores required 0.02 m and 0.01 m and Bragança 0.06 m and 0.03 m for cost-optimised and non-optimised thermal renders with sisal fibre, respectively). The optimum thickness related to the ADP-ff and GWP impacts was higher, 0.04 m for the Azores and 0.09 m for Bragança. A steeper decrease in the annual energy consumption occurred for thermal renders up to 0.02 m in the Azores and 0.04 m in Bragança. Aerogel-based fibre-enhanced thermal renders had benefits, mainly from 600 DD* onwards.

Keywords: ADP-ff; GWP; aramid fibres; cost optimisation; optimum insulation thickness; payback period; silica aerogel; sisal fibres; thermal render.

Grants and funding

This research was funded by Fundação para a Ciência e a Tecnologia—FCT, grant numbers SFRH/BD/132239/2017 and 2023.05316.BD.