Analyzing long-term dynamics of agricultural greenhouse gas emissions in Austria, 1830-2018

Sci Total Environ. 2024 Feb 10:911:168667. doi: 10.1016/j.scitotenv.2023.168667. Epub 2023 Nov 22.

Abstract

Agriculture is an important contributor to greenhouse gas (GHG) emissions. While the development of agricultural GHG emissions on national and global scales is well studied for the last three to six decades, little is known about their trajectory and drivers over longer periods. In this article, we address this research gap by calculating and analyzing GHG emissions related to agriculture in Austria from 1830 to 2018. We calculate territorial emissions on an annual basis and include all GHG emissions from the processes directly involved in agricultural production. Based on this time series, we quantify the relative importance of major drivers of changes in GHG emissions across time and agricultural product categories, applying a structural decomposition analysis. We find that agricultural GHG emissions in Austria increased by 69 % over the total study period, from 4.6 Mt. CO2e/yr in 1830 to 7.7 Mt. CO2e/yr in 2018. While emissions increased only moderately from 1830 to 1945 (+22 % overall), with strong fluctuations between 1914 and 1945, they doubled from 1945 to 1985. In the most recent period from 1985 to 2018, emissions fell by one third, with decreases leveling off over time. Our decomposition analysis reveals that increases in agricultural production per capita most importantly contributed to the high growth in GHG emissions from 1945 to 1985. Conversely, decreasing emission intensities of products and a more climate friendly product mix were key drivers in the emissions reduction observed after 1985. We also contribute to the discussion around the global warming potential star (GWP*), by calculating GHG emissions based on this alternative metric, and contextualize our data within total socio-economic GHG emission trends. By providing insights into the historical trends and drivers of agricultural GHG emissions, our findings enhance the understanding of their long-term historical dynamics and adds to the knowledge base for future mitigation efforts.

Keywords: Agriculture; Austria; GHG emissions; GWP*; drivers; past trajectory.