Modulated Ultrathin NiCo-LDH Nanosheet-Decorated Zr3+-Rich Defective NH2-UiO-66 Nanostructure for Efficient Photocatalytic Hydrogen Evolution

ACS Appl Mater Interfaces. 2023 Dec 6;15(48):55822-55836. doi: 10.1021/acsami.3c13009. Epub 2023 Nov 23.

Abstract

Defect engineering through modification of their surface linkage is found to be an effective pathway to escalate the solar energy conversion efficiency of metal-organic frameworks (MOFs). Herein, defect engineering using controlled decarboxylation on the NH2-UiO-66 surface and integration of ultrathin NiCo-LDH nanosheets synergizes the hydrogen evolution reaction (HER) under a broad visible light regime. Diversified analytical methods including positron annihilation lifetime spectroscopy were employed to investigate the role of Zr3+-rich defects by analyzing the annihilation characteristics of positrons in NH2-UiO-66, which provides a deep insight into the effects of structural defects on the electronic properties. The progressively tuned photophysical properties of the NiCo-LDH@NH2-UiO-66-D-heterostructured nanocatalyst led to an impressive rate of HER (∼2458 μmol h-1 g-1), with an apparent quantum yield of ∼6.02%. The ultrathin NiCo-LDH nanosheet structure was found to be highly favored toward electrostatic self-assembly in the heterostructure for efficient charge separation. Coordination of Zr3+ on the surface of the NiCo-LDH nanosheet support through NH2-UiO-66 was confirmed by X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy techniques. Femtosecond transient absorption spectroscopy studies unveiled a photoexcited charge migration process from MOF to NiCo-LDH which favorably occurred on a picosecond time scale to boost the catalytic activity of the composite system. Furthermore, the experimental finding and HER activity are validated by density functional theory studies and evaluation of the free energy pathway which reveals the strong hydrogen binding over the surface and infers the anchoring effect of the ultrathin layered double hydroxide (LDH) in the vicinity of the Zr cluster with a strong host-guest interaction. This work provided a novel insight into efficient photocatalysis via defect engineering at the linker modulation in MOFs.

Keywords: DFT; H2 production; NH2−UiO-66; PALS; defect engineering; fs-TAS; ultrathin NiCo-LDH nanosheet.