Hydroxyl-Driven Enhanced Birefringence in Borophosphates

Inorg Chem. 2023 Dec 11;62(49):20430-20438. doi: 10.1021/acs.inorgchem.3c03394. Epub 2023 Nov 22.

Abstract

Borophosphates have become promising candidates for ultraviolet or deep-ultraviolet functional crystals. Through high-temperature solution method, four new borophosphates, K2B2P2O9, (NH4)2BP2O7(OH), K2BP2O7(OH), and P21/c-(NH4)2B2P3O11(OH), were acquired successfully. Single crystal X-ray diffraction suggests that K2B2P2O9, (NH4)2BP2O7(OH), and K2BP2O7(OH) belong to the noncentrosymmetric space group, while P21/c-(NH4)2B2P3O11(OH) belongs to the centrosymmetric compound. It is worth mentioning that K2B2P2O9, (NH4)2BP2O7(OH), and K2BP2O7(OH) present the new fundamental building blocks [B2P2O11], [BP2O10H], and [BP2O9(OH)], respectively, as far as we know. Compared with K2B2P2O9, (NH4)2BP2O7(OH), K2BP2O7(OH), and P21/c-(NH4)2B2P3O11(OH) exhibit a larger optical anisotropy, further confirming the positive effect of hydroxyl groups on birefringence. UV-vis-NIR diffuse reflectance spectra display that K2B2P2O9 and (NH4)2BP2O7(OH) have short UV cutoff edges. Meanwhile, theoretical calculations were conducted to comprehend their optical properties and electronic structures.