Determination of sulfide in complex biofilm matrices using silver-coated, 4-mercaptobenzonitrile-modified gold nanoparticles, encapsulated in ZIF-8 as surface-enhanced Raman scattering nanoprobe

Mikrochim Acta. 2023 Nov 22;190(12):475. doi: 10.1007/s00604-023-06071-9.

Abstract

A surface-enhanced Raman scattering nanoprobe has been developed for sulfide detection and applied to complex bacterial biofilms. The nanoprobe, Au@4-MBN@Ag@ZIF-8, comprised a gold core modified with 4-mercaptobenzonitrile (4-MBN) as signaling source, a layer of silver shell as the sulfide sensitization material, and a zeolitic imidazolate framework-8 (ZIF-8) as surface barrier. ZIF-8, with its high surface area and mesoporous structure, was applied to preconcentrate sulfide around the nanoprobe with its excellent adsorption capacity. Besides, the external wrapping of ZIF-8 can not only prevent the interference of biomolecules, such as proteins, with the Au@4-MBN@Ag assay but also enhance the detection specificity through the sulfide cleavage function towards ZIF-8. These properties are critical for the application of this nanoprobe to complex environmental scenarios. In the presence of sulfide, it was first enriched through adsorption by the outer ZIF-8 layer, then destroyed the barrier layer, and subsequently reacted with the Ag shell, leading to changes in the Raman signal. Through this rational design, the Au@4-MBN@Ag@ZIF-8 nanoprobe exhibited excellent detection sensitivity, with a sulfide detection limit in the nanomolar range and strong linearity in the concentration range 50 nM to 500 μM. Furthermore, the proposed Au@4-MBN@Ag@ZIF-8 nanoprobe was effectively utilized for sulfide detection in intricate biofilm matrices, demonstrating its robust selectivity and reproducibility.

Keywords: Biofilm; Microbiologically induced corrosion; Nanoprobe; SERS; Sulfide.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Extracellular Polymeric Substance Matrix
  • Gold
  • Metal Nanoparticles*
  • Reproducibility of Results
  • Silver
  • Spectrum Analysis, Raman
  • Sulfides
  • Zeolites*

Substances

  • Gold
  • Silver
  • Sulfides
  • Zeolites