Dendrite-Free Dual-Phase Li-Ba Alloy Anode Enabled by Ordered Array of Built-in Mixed Conducting Microchannels

Small. 2024 Apr;20(14):e2308279. doi: 10.1002/smll.202308279. Epub 2023 Nov 21.

Abstract

The development and application of lithium (Li) anode is hindered by volumetric variation, dendritic Li growth, and parasitic reactions. Herein, a dual-phase Li-barium (Ba) alloy with self-assembled microchannels array is synthesized through a one-step thermal fusion method to investigate the inhibition effect of lithiophilic composite porous array on Li dendrites. The Li-rich Li-Ba alloy (BaLi24) as composite Li electrode exhibits an ordered porous structure of BaLi4 intermetallic compound after delithiation, which acts as a built-in 3D current collector during Li plating/striping process. Furthermore, the lithiophilic BaLi4 alloy scaffold is a mixed conductor, featuring with Li+ ions diffusion capability, which can efficiently transport the reduced Li to the interior of the electrode structure. This unique top-down growth mode can effectively prohibit Li dendrites growth and improve the space utilization of 3D electrode structure. The spin-polarized density functional theory (DFT) calculations suggest that the absorption capability of BaLi4 benefits the deposition of Li metal. As a result, the cell performance with the dual-phase Li-Ba alloy anode is significantly improved.

Keywords: dual‐phase Li‐Ba alloy; lithium battery; lithium dendrite; lithium metal anode; self‐assembled microchannels array.