A novel method for the measurement of superconducting transmission lines at terahertz frequencies

Rev Sci Instrum. 2023 Nov 1;94(11):114703. doi: 10.1063/5.0153049.

Abstract

Characterizing the properties (e.g., effective dielectric constant εeff, attenuation constant α, and characteristic impedance Z0) of terahertz (THz) superconducting transmission lines is of particular interest in designing on-chip integrated THz bandpass filters, which are a critical component for THz astronomical instruments, such as multi-color camera and broadband imaging spectrometers. Here, we propose a novel method for the characterization of three parameters (εeff, α, and Z0) of THz superconducting transmission lines. This method measures the ratio of the THz signal powers through two different-length branches of the superconducting transmission line to be measured. In addition, only one measurement is required for an all-in-one device chip, including an antenna, a half-power divider, the superconducting transmission line to be measured, and two detectors. The key point is that the superconducting transmission line to be measured is impedance-mismatched with the two integrated detectors. The method is validated through simulation and measurement for superconducting coplanar waveguide transmission lines around 400 GHz.