Electron activated dissociation - a complementary fragmentation technique to collision-induced dissociation for metabolite identification of synthetic cathinone positional isomers

Anal Chim Acta. 2023 Dec 1:1283:341962. doi: 10.1016/j.aca.2023.341962. Epub 2023 Oct 26.

Abstract

Over the last decade, a remarkable number of new psychoactive substances (NPS) have emerged onto the drug market, resulting in serious threats to both public health and society. Despite their abundance and potential toxicity, there is little information available on their metabolism, a crucial piece of information for clinical and forensic purposes. NPS metabolism can be studied using in vitro models, such as liver microsomes, cytosol, hepatocytes, etc. The tentative structural elucidation of metabolites of NPS formed using in vitro models is typically carried out using liquid chromatography combined with high-resolution tandem mass spectrometry (LC-HRMS2) with collision-induced dissociation (CID) as a fragmentation method. However, the thermally-excited ions produced with CID may not be sufficient for unambiguous identification of metabolites or their complete characterization. Electron-activated dissociation (EAD), a relatively new fragmentation approach that can be used to fragment singly-charged ions, may provide complementary structural information that can be used to further improve the confidence in metabolite identification. The aim of this study was to compare CID and EAD as fragmentation methods for the characterization and identification of synthetic cathinone positional isomers and their metabolites. The in vitro metabolism of 2-methylethcathinone (2-MEC), 3-methylethcathinone (3-MEC) and 4-methylethcathinone (4-MEC) was investigated with both CID and EAD methods using LC-HRMS2. Four, seven and six metabolites were tentatively identified for the metabolism of 2-MEC, 3-MEC and 4-MEC, respectively. Here, the metabolism of 3-MEC and 2-MEC is reported for the first time. The EAD product ion mass spectra showed different fragmentation patterns compared to CID, where unique and abundant product ions were observed in EAD but not in CID. More importantly, certain EAD exclusive product ions play a significant role in structural elucidation of some metabolites. These results highlight the important role that EAD fragmentation can play in metabolite identification workflows, by providing additional fragmentation data compared with CID and, thus, enhancing the confidence in structural elucidation of drug metabolites.

Keywords: Collision-induced dissociation; Electron activated dissociation; Liquid chromatography; Mass spectrometry; Phase I metabolite identification; Positional isomers; Synthetic cathinones.

MeSH terms

  • Chromatography, Liquid / methods
  • Electrons*
  • Ions / analysis
  • Synthetic Cathinone*
  • Tandem Mass Spectrometry / methods

Substances

  • Synthetic Cathinone
  • Ions