Modulation of Si-O Structure in Uniformly Ultrasmall Silicon Oxycarbide for Superior Lifespan of Lithium Metal Anodes

ACS Nano. 2023 Dec 12;17(23):23965-23976. doi: 10.1021/acsnano.3c08561. Epub 2023 Nov 17.

Abstract

Utilizing nanoseeds guiding homogeneous deposition of lithium is an effective strategy to inhibit disorderly growth of lithium, where silicon oxide has been attracting attention as a transform seed. However, the research on silicon-oxide-based seeds has concentrated more on utilizing their lithiophilicity but less on their Si-O structures, which could result in different failure mechanisms. In this study, various Si-O structures of silicon oxycarbide carbon nanofibers are prepared by adjusting the content of octa(aminopropylsilsesquioxane). According to XANES and experimental observations, the C-rich SiOC has an active Si-O-C structure but generates a larger volume variation during lithiation, while in the O-rich phase, the silica-oxygen tetrahedral structure can contribute to alleviate the volume expansion but has poor electrochemical activity. SiOC, which is dominated by SiO3C, has a suitable Si-O and silica-oxygen tetrahedral-structure distribution, which balances the electrochemical activity and volume expansion. This allows the host to demonstrate an excellent lifespan over 3740 h with a tiny voltage hysteresis (22 mV) at 2 mA cm-2, and it retains a favorable capacity of 97 mA h g-1 after 630 cycles with a high Coulombic efficiency of 99.7% in full cells. This study experiences the influence of various Si-O structures on lithium metal anodes.

Keywords: Si−O structures; electrospinning; failure mechanisms; lithiophilic silicon oxycarbide; lithium metal anodes.