Glutamine-rich regions of the disordered CREB transactivation domain mediate dynamic intra- and intermolecular interactions

Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2313835120. doi: 10.1073/pnas.2313835120. Epub 2023 Nov 14.

Abstract

The cyclic AMP response element (CRE) binding protein (CREB) is a transcription factor that contains a 280-residue N-terminal transactivation domain and a basic leucine zipper that mediates interaction with DNA. The transactivation domain comprises three subdomains, the glutamine-rich domains Q1 and Q2 and the kinase inducible activation domain (KID). NMR chemical shifts show that the isolated subdomains are intrinsically disordered but have a propensity to populate local elements of secondary structure. The Q1 and Q2 domains exhibit a propensity for formation of short β-hairpin motifs that function as binding sites for glutamine-rich sequences. These motifs mediate intramolecular interactions between the CREB Q1 and Q2 domains as well as intermolecular interactions with the glutamine-rich Q1 domain of the TATA-box binding protein associated factor 4 (TAF4) subunit of transcription factor IID (TFIID). Using small-angle X-ray scattering, NMR, and single-molecule Förster resonance energy transfer, we show that the Q1, Q2, and KID regions remain dynamically disordered in a full-length CREB transactivation domain (CREBTAD) construct. The CREBTAD polypeptide chain is largely extended although some compaction is evident in the KID and Q2 domains. Paramagnetic relaxation enhancement reveals transient long-range contacts both within and between the Q1 and Q2 domains while the intervening KID domain is largely devoid of intramolecular interactions. Phosphorylation results in expansion of the KID domain, presumably making it more accessible for binding the CBP/p300 transcriptional coactivators. Our study reveals the complex nature of the interactions within the intrinsically disordered transactivation domain of CREB and provides molecular-level insights into dynamic and transient interactions mediated by the glutamine-rich domains.

Keywords: NMR; TFIID; intrinsically disordered protein; single-molecule FRET; transcriptional activation.

MeSH terms

  • Binding Sites
  • Cyclic AMP Response Element-Binding Protein* / genetics
  • Cyclic AMP Response Element-Binding Protein* / metabolism
  • Gene Expression Regulation
  • Glutamine* / metabolism
  • Protein Binding / physiology
  • Transcriptional Activation

Substances

  • Glutamine
  • Cyclic AMP Response Element-Binding Protein