Dietary supplementation of solubles from shredded, steam-exploded pine particles modulates cecal microbiome composition in broiler chickens

J Anim Sci Technol. 2023 Sep;65(5):971-988. doi: 10.5187/jast.2023.e15. Epub 2023 Sep 30.

Abstract

This study evaluated the effects of supplementing solubles from shredded, steam-exploded pine particles (SSPP) on growth performances, plasma biochemicals, and microbial composition in broilers. The birds were reared for 28 days and fed basal diets with or without the inclusion of SSPP from 8 days old. There were a total of three dietary treatments supplemented with 0% (0% SSPP), 0.1% (0.1% SSPP) and 0.4% (0.4% SSPP) SSPP in basal diets. Supplementation of SSPP did not significantly affect growth or plasma biochemicals, but there was a clear indication of diet-induced microbial shifts. Beta-diversity analysis revealed SSPP supplementation-related clustering (ANOSIM: r = 0.31, p < 0.01), with an overall lower (PERMDISP: p < 0.05) individual dispersion in comparison to the control group. In addition, the proportions of the Bacteroides were increased, and the relative abundances of the families Vallitaleaceae, Defluviitaleaceae, Clostridiaceae, and the genera Butyricicoccus and Anaerofilum (p < 0.05) were significantly higher in the 0.4% SSPP group than in the control group. Furthermore, the linear discriminant analysis effect size (LEfSe) also showed that beneficial bacteria such as Ruminococcus albus and Butyricicoccus pullicaecorum were identified as microbial biomarkers of dietary SSPP inclusion (p < 0.05; | LDA effect size | > 2.0). Finally, network analysis showed that strong positive correlations were established among microbial species belonging to the class Clostridia, whereas Erysipelotrichia and Bacteroidia were mostly negatively correlated with Clostridia. Taken together, the results suggested that SSPP supplementation modulates the cecal microbial composition of broilers toward a "healthier" profile.

Keywords: Broiler; Cecum; Growth; Microbiome; Solubles from shredded; Steam-exploded pine particles.