Defects-Induced Single-Atom Anchoring on Metal-Organic Frameworks for High-Efficiency Photocatalytic Nitrogen Reduction

Angew Chem Int Ed Engl. 2024 Jan 8;63(2):e202314408. doi: 10.1002/anie.202314408. Epub 2023 Dec 6.

Abstract

Aiming to improve the photocatalytic activity in N2 fixation to produce ammonia, herein, we proposed a photochemical strategy to fabricate defects, and further deposition of Ru single atoms onto UiO-66 (Zr) framework. Electron-metal-support interactions (EMSI) were built between Ru single atoms and the support via a covalently bonding. EMSI were capable of accelerating charge transfer between Ru SAs and UiO-66, which was favorable for highly-efficiently photocatalytic activity. The photocatalytic production rate of ammonia improved from 4.57 μmol g-1 h-1 to 16.28 μmol g-1 h-1 with the fabrication of defects onto UiO-66, and further to 53.28 μmol g-1 h-1 with Ru-single atoms loading. From the DFT results, it was found that d-orbital electrons of Ru were donated to N2 π✶-antibonding orbital, facilitating the activation of the N≡N triple bond. A distal reaction pathway was probably occurred for the photocatalytic N2 reduction to ammonia on Ru1 /d-UiO-66 (single Ru sites decorated onto the nodes of defective UiO-66), and the first step of hydrogenation of N2 was the reaction determination step. This work shed a light on improving the photocatalytic activity via feasibly anchoring single atoms on MOF, and provided more evidences to understand the reaction mechanism in photocatalytic reduction of N2 .

Keywords: EMSI; Metal-Organic Framework; N2 Fixation; Photocatalysis; Single-Atom Catalyst.