Engineering memory with an extrinsically disordered kinase

Sci Adv. 2023 Nov 17;9(46):eadh1110. doi: 10.1126/sciadv.adh1110. Epub 2023 Nov 15.

Abstract

Synaptic plasticity plays a crucial role in memory formation by regulating the communication between neurons. Although actin polymerization has been linked to synaptic plasticity and dendritic spine stability, the causal link between actin polymerization and memory encoding has not been identified yet. It is not clear whether actin polymerization and structural changes in dendritic spines are a driver or a consequence of learning and memory. Using an extrinsically disordered form of the protein kinase LIMK1, which rapidly and precisely acts on ADF/cofilin, a direct modifier of actin, we induced long-term enlargement of dendritic spines and enhancement of synaptic transmission in the hippocampus on command. The activation of extrinsically disordered LIMK1 in vivo improved memory encoding and slowed cognitive decline in aged mice exhibiting reduced cofilin phosphorylation. The engineered memory by an extrinsically disordered LIMK1 supports a direct causal link between actin-mediated synaptic transmission and memory.

MeSH terms

  • Actin Depolymerizing Factors / metabolism
  • Actins* / metabolism
  • Animals
  • Hippocampus* / metabolism
  • Mice
  • Neuronal Plasticity / physiology
  • Phosphorylation / physiology

Substances

  • Actins
  • Actin Depolymerizing Factors