Spatiotemporal variation in the vegetation cover of Peshawar Basin in response to climate change

Environ Monit Assess. 2023 Nov 15;195(12):1474. doi: 10.1007/s10661-023-12094-9.

Abstract

Climate factors like temperature, precipitation, humidity, and sunshine time exert a profound influence on vegetation. The intricate interplay between the two is crucial to understand in the face of changing climate to develop mitigation strategies. In the current exploration, we delve how climate variability (CV) has impacted the vegetation in the Peshawar Basin (PB) using remote sensing data tools. The trend of climatic variability was investigated using the modified Mann-Kendall test and Sen's slope statistics. The changing climatic parameters were regressed on the Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI). The NDVI was further analyzed for spatiotemporal variability under land surface temperature (LST) influence. Results revealed that among the climate factors, average annual temperature and solar radiation have a significant (p < 0.05) negative impact on vegetation while precipitation and relative humidity significantly (p < 0.05) influence NDVI positively. The overall positive trend shows that vegetation improved between 2001 and 2020 with time, however some years (2010, 2012, 2014, 2016, and 2017) with low NDVI. NDVI varied in space considerably due to climatic extremes brought on by CV and the urbanization of agricultural land. NDVI regressed on LST showed that there was no or very little vegetation in the grids with high LST. The study concluded that the region is significantly impacted by both CV-related extreme weather events and anthropogenic activities. The vegetation is improving, but it is in danger of being destroyed by deforestation due to CV and human activities that exacerbate the risk of future calamities. To protect vegetation and avoid disasters, there is an immense need for adaptation and mitigation measures to deal with the region's fast-changing environment. The study urges local authorities to create climate-resilient governmental policies and supports regional sustainable development and vegetation restoration.

Keywords: Climate variability; LST; NDVI; Peshawar Basin; Spatiotemporal variations; Vegetation.

MeSH terms

  • Agriculture
  • China
  • Climate Change*
  • Environmental Monitoring*
  • Humans
  • Satellite Imagery
  • Temperature