MXene-Integrated Perylene Anode with Ultra-Stable and Fast Ammonium-Ion Storage for Aqueous Micro Batteries

Adv Sci (Weinh). 2024 Jan;11(1):e2305524. doi: 10.1002/advs.202305524. Epub 2023 Nov 14.

Abstract

The aqueous micro batteries (AMBs) are expected to be one of the most promising micro energy storage devices for its safe operation and cost-effectiveness. However, the performance of the AMBs is not satisfactory, which is attributed to strong interaction between metal ions and the electrode materials. Here, the first AMBs are developed with NH4 + as charge carrier. More importantly, to solve the low conductivity and the dissolution during the NH4 + intercalation/extraction problem of perylene material represented by perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), the Ti3 C2 Tx MXene with high conductivity and polar surface terminals is introduced as a conductive skeleton (PTCDA/Ti3 C2 Tx MXene). Benefitting from this, the PTCDA/Ti3 C2 Tx MXene electrodes exhibit ultra-high cycle life and rate capability (74.31% after 10 000 galvanostatic chargedischarge (GCD) cycles, and 91.67 mAh g-1 at 15.0 A g-1 , i.e., capacity retention of 45.2% for a 30-fold increase in current density). More significantly, the AMBs with NH4 + as charge carrier and PTCDA/Ti3 C2 Tx MXene anode provide excellent energy density and power density, cycle life, and flexibility. This work will provide strategy for the development of NH4 + storage materials and the design of AMBs.

Keywords: PTCDA/Ti3C2Tx MXene; aqueous micro batteries; flexibility; ultra-stable and fast NH4+ storage.