Brief Change in Dopamine Activity during Consolidation Impairs Long-Term Memory via Sleep Disruption

bioRxiv [Preprint]. 2023 Oct 25:2023.10.23.563499. doi: 10.1101/2023.10.23.563499.

Abstract

Sleep disturbances are associated with poor long-term memory (LTM) formation, yet the underlying cell types and neural circuits involved have not been fully decoded. Dopamine neurons (DANs) are involved in memory processing at multiple stages. Here, we show that brief activation of protocerebral anterior medial DANs (PAM-DANs) or inhibition of a pair of dorsal posterior medial (DPM) neurons during the first few hours of memory consolidation impairs 24 h LTM. Interestingly, sleep deprivation elevates the neural activity of PAM-DANs and DPM neurons, and brief thermos-activation of PAM-DANs or inactivation of DPM neurons results in sleep loss and fragmentation. Pharmacological rescue of sleep after this manipulation restores LTM. A specific subset of PAM-DANs, PAM-α1 that synapse onto DPM neurons specify the microcircuit that links sleep and memory. PAM-DANs, including PAM-α1, form functional synapses with DPM neurons mainly via Dop1R1 receptor to inhibit DPM. Our data suggest that the post-training activity of PAM(-α1)-DPM microcircuit, especially during memory consolidation, plays an essential role in maintaining the sleep necessary for LTM consolidation, providing a new cellular and circuit basis for the complex relationship between sleep and memory.

Publication types

  • Preprint