Electrospun SnO2/WO3 Heterostructure Nanocomposite Fiber for Enhanced Acetone Vapor Detection

Polymers (Basel). 2023 Nov 3;15(21):4318. doi: 10.3390/polym15214318.

Abstract

Volatile organic compounds (VOCs), often invisible but potentially harmful, are prevalent in industrial and laboratory settings, posing health risks. Detecting VOCs in real-time with high sensitivity and low detection limits is crucial for human health and safety. The optical sensor, utilizing the gasochromic properties of sensing materials, offers a promising way of achieving rapid responses in ambient environments. In this study, we investigated the heterostructure of SnO2/WO3 nanoparticles and employed it as the primary detection component. Using the electrospinning technique, we fabricated a sensing fiber containing Ag NPs, poly(methyl methacrylate) (PMMA), and SnO2/WO3 (PMMA-Ag-SnO2/WO3) for acetone vapor detection. Following activation via UV/ozone treatment, we observed charge migration between WO3 and SnO2, resulting in a substantial generation of superoxide radicals on SnO2 nanoparticles. This phenomenon facilitates structural deformation of the fiber and alters the oxidation state of tungsten ions, ultimately leading to a significant change in extinction when exposed to acetone vapor. As a result, PMMA-Ag-SnO2/WO3 fiber achieves a detection limit of 100 ppm and a response time of 1.0 min for acetone detection. These findings represent an advancement in the development of sensitive and selective VOC sensing devices.

Keywords: chemical sensors; electrospinning; nanoparticles; sensing fibers; volatile organic compounds.