A Simplified Method for the Preparation of Highly Conductive and Flexible Silk Nanofibrils/MXene Membrane

Materials (Basel). 2023 Oct 30;16(21):6960. doi: 10.3390/ma16216960.

Abstract

Silk nanofibers (SNF) have great applications in high-performance functional nanocomposites due to their excellent mechanical properties, biocompatibility, and degradability. However, the preparation of SNF by traditional methods often requires the use of some environmentally harmful or toxic reagents, limiting its application in green chemistry. In this paper, we successfully prepared SNF using natural silk as raw material and solvent stripping technology by adjusting the solvent concentration and solution ratio (the diameter of about 120 nm). Using the above SNFs as raw materials, SNF membranes were prepared by vacuum filtration technology. In addition, we prepared an SNF/MXene nanocomposite material with excellent humidity sensitivity by simply coating MXene nanosheets with silk fibers. The conductivity of the material can approach 1400.6 S m-1 with excellent mechanical strength (51.34 MPa). The SNF/MXene nanocomposite material with high mechanical properties, high conductivity, and green degradability can be potentially applied in the field of electromagnetic interference (EMI) shielding, providing a feasible approach for the development of functional nanocomposite materials.

Keywords: nanocomposite material; nanofibrils; silk nanofibrils; solution stripping.