Polymorphs of Nb2O5 Compound and Their Electrical Energy Storage Applications

Materials (Basel). 2023 Oct 30;16(21):6956. doi: 10.3390/ma16216956.

Abstract

Niobium pentoxide (Nb2O5), as an important dielectric and semiconductor material, has numerous crystal polymorphs, higher chemical stability than water and oxygen, and a higher melt point than most metal oxides. Nb2O5 materials have been extensively studied in electrochemistry, lithium batteries, catalysts, ionic liquid gating, and microelectronics. Nb2O5 polymorphs provide a model system for studying structure-property relationships. For example, the T-Nb2O5 polymorph has two-dimensional layers with very low steric hindrance, allowing for rapid Li-ion migration. With the ever-increasing energy crisis, the excellent electrical properties of Nb2O5 polymorphs have made them a research hotspot for potential applications in lithium-ion batteries (LIBs) and supercapacitors (SCs). The basic properties, crystal structures, synthesis methods, and applications of Nb2O5 polymorphs are reviewed in this article. Future research directions related to this material are also briefly discussed.

Keywords: crystal phase synthesis; electrical properties; electrode materials; niobium oxide.

Publication types

  • Review