From Hive to Highway: Waste Honeycombs as a Sustainable Modifier for Asphalt Binder Formulations in South Korea

Materials (Basel). 2023 Oct 28;16(21):6934. doi: 10.3390/ma16216934.

Abstract

Navigating the crossroads of sustainable infrastructure and innovative waste management, this research unveils the potential of waste honeycombs (WHCs)-an overlooked byproduct of apiculture-as a potent modifier for asphalt binder formulations. This endeavor addresses the dual challenge of enhancing road pavement sustainability and mitigating environmental degradation. A meticulous methodology evaluated the impact of varying WHC concentrations (5, 10, and 15 wt.%) on the asphalt binder, examining its attributes pre- and post-aging. Employing an array of analytical tools-thin-layer chromatography-flame ionization detection (TLC-FID); Fourier transform-infrared spectroscopy (FT-IR); scanning electron microscopy (SEM); thermogravimetric analysis (TGA); and a suite of conventional tests such as penetration, softening point, viscosity, ductility, dynamic shear rheometer (DSR), and multiple stress-creep recovery (MSCR)-provided a comprehensive insight into the binder's behavior. TLC-FID analyses revealed that WHC, with its 92 wt.% resin content, altered the SARA profile across distinct aging conditions, notably reducing asphaltene content, a factor linked to binder stiffness. The colloidal instability index (IC) further attested to this, pointing to a more thermodynamically stable system with WHC's inclusion. Meanwhile, FT-IR confirmed a physical interaction between WHC and asphalt without introducing new chemical entities. SEM observations highlighted the superior miscibility of WHC with asphalt, evidenced by a unique microtexture. With marked precision, TGA assessments unveiled a bolstering of asphalt's inherent thermal resilience consequent to a minor WHC integration. From the conventional tests, shifts in penetration, softening point, and viscosity were observed, with reduced viscosity, indicating improved workability. Lastly, while rutting potential was sensitive to WHC concentrations, fatigue resistance notably heightened with minor to moderate WHC inclusions. In essence, this pioneering study advocates for WHC's integration into asphalt formulations, offering enhanced road performance coupled with sustainable waste utilization. The findings underscore the synergy between environmental stewardship and infrastructural advancement.

Keywords: SARA profile; SEM microstructure; apiculture byproduct; asphalt binder formulations; asphaltene reduction; binder behavior modification; colloidal instability index (IC); waste honeycombs (WHCs).

Grants and funding

This research received funding from the Korea Agency for Infrastructure Technology Advancement (KAIA) through a grant provided by the Ministry of Land, Infrastructure, and Transport (Grant No. RS-2019-KA152690). Additionally, partial support for this paper came from the Education and Research Promotion Program of KOREATECH in 2023.