Fabrication of chitin-glucan nanofibers: Insights into mushroom pretreatment and subsequent acidic deep eutectic solvent-based esterification

Carbohydr Polym. 2024 Jan 1:323:121391. doi: 10.1016/j.carbpol.2023.121391. Epub 2023 Sep 14.

Abstract

Mushrooms contain chitin-glucan complex (CGC), a natural copolymer of chitin and glucan, and nanofibrillation enhances its applicability. Here, a novel method was used to fabricate chitin-glucan nanofibers (CGNFs) from white button mushrooms. The first stage was to pretreat the raw mushroom using hot water and alkali to remove water-soluble glucans and alkali-soluble proteins, respectively, producing a CGC amenable to nanofibrillation. The second stage was nanofibrillation via esterification using acidic deep eutectic solvents (DESs) and subsequent ultrasonication. Five choline chloride-based DESs containing mono- or dicarboxylic acid were tested for the CGC esterification. DESs with strong dicarboxylic acids expedited nanofibrillation by homogeneously dispersing the solid CGC, swelling CGC fibrils, and facilitating acidity-dependent esterification leading to steric and electrostatic repulsions. One CGNF, namely CGNF_CCMnA, was characterized: it contained chitin and glucan at an approximate ratio of 8:2 and exhibited desirable properties as nanomaterials, including small diameter (11 nm) and high colloidal (zeta potential < -30 mV above pH 5.8) and thermal stability (Tm, 315 °C). CGNF_CCMnA was tested for the adsorption to methylene blue, revealing a maximum adsorption capacity of 82.58 mg/g. The proposed approach is an efficient and readily applicable method to fabricate various mushroom-derived safe CGNFs and to produce related nanomaterials.

Keywords: Acidic deep eutectic solvent; Chitin-glucan nanofiber; Chitin–glucan complex; Esterification; Nanofibrillation.