Self-cleaning and photodegradle PVDF separation membranes modified with self-assembled TiO2-g-CS/CNTs particle

Carbohydr Polym. 2024 Jan 1:323:121467. doi: 10.1016/j.carbpol.2023.121467. Epub 2023 Oct 7.

Abstract

This work obtained separation membranes with UV-cleaning performance by adding TiO2-g-CS/CNTs photocatalyst to the PVDF. The positively charged chitosan (CS) and negatively charged carboxylic carbon nanotube (CNTs-COOH) can be self-assembled into the bilayer structure on the surface of TiO2 particles through electrostatic attraction. The presence of many hydrophilic groups in CS and CNTs-COOH significantly improves the hydrophilicity of TiO2-g-CS/CNTs-PVDF membrane, and helps TiO2 to be uniformly dispersed on the upper surface. TiO2-g-CS/CNTs promote the change of pore structure and expand the flux of the modified membrane to 4.5 times that of pure PVDF. Zeta potential demonstrates that the TiO2-g-CS particles successfully attracted CNTs in the PVDF matrix, and the membrane surface was still positively charged. Thus, the combined effect of the positively charged TiO2-g-CS and the highly adsorbed CNTs enhanced the retention of the contaminants. More importantly, there is a charge transfer between the grafted CS and TiO2 interface to obtain a broader light absorption band. The excitation carriers provided by CNTs significantly contribute to the photocatalytic performance after transfer between TiO2 and CS; thus, TiO2-g-CS/CNTs-PVDF produces higher photocatalytic activity for dye molecules (degradation rate > 97 %).

Keywords: CS graft modified TiO(2); Dye wastewater purification; Electrostatic self-assembly; PVDF; UV degradation.