Microfluidic-Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High-Stable Zinc-Organic Battery

Adv Mater. 2024 Feb;36(6):e2309753. doi: 10.1002/adma.202309753. Epub 2023 Dec 6.

Abstract

Zinc powder (Zn-P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti-corrosive Zn-P-based anode with a functional layer formed from a MXene and Cu-THBQ (MXene/Cu-THBQ) heterostructure is successfully fabricated via microfluidic-assisted 3D printing. The unusual anti-corrosive and strong adsorption of Zn ions using the MXene/Cu-THBQ functional layer can effectively homogenize the Zn ion flux and inhibit the hydrogen evolution reaction (HER) during the repeated process of Zn plating/stripping, thus achieving stable Zn cycling. Consequently, a symmetric cell based on Zn-P with the MXene/Cu-THBQ anode exhibits a highly reversible cycling of 1800 h at 2 mA cm-2 /1 mAh cm-2 . Furthermore, a Zn-organic full battery matched with a 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl organic cathode riveted on graphene delivers a high reversible capacity and maintains a long cycle life.

Keywords: 2D conductive metal-organic frameworks; 2D heterostructures; MXenes; zinc powder anodes; zinc-organic batteries.