Bispidine as a promising scaffold for designing molecular machines

Org Biomol Chem. 2023 Nov 22;21(45):9054-9060. doi: 10.1039/d3ob01406a.

Abstract

The development of artificial molecular machines is a challenging endeavor. Herein, we have synthesized a series of bispidine diamides D1-D6 that exhibit rotation reminiscent of a motor motion. Dynamic NMR, X-ray diffraction, quantum mechanical calculations, and molecular dynamics simulations provided insights into their rotational dynamics. All the diamides D1-D6 exhibited mutually independent rotation around the two bispidine arms. However, the rate of rotation and the presence or absence of directionality in amide bond rotation were found to depend on the solvent, temperature, and nature of substitution on the amide carbonyl. These engineered systems may aid in the development of biologically relevant synthetic molecular motors. Studies on homochiral and heterochiral bispidine-peptides revealed that the direction of rotation can be controlled by chirality and the nature of the amino acid.