High-Performance and Low-Power p-Channel Transistors Based on Monolayer Be2C

ACS Appl Mater Interfaces. 2023 Nov 22;15(46):53644-53650. doi: 10.1021/acsami.3c09470. Epub 2023 Nov 7.

Abstract

The advantages of 2D materials in alleviating the issues of short-channel effect and power dissipation in field-effect transistors (FETs) are well recognized. However, the progress of complementary integrated circuits has been stymied by the absence of high-performance (HP) and low-power (LP) p-channel transistors. Therefore, we conducted an investigation into the electronic and ballistic transport characteristics of monolayer Be2C, which features quasi-planar hexacoordinate carbons, by employing nonequilibrium Green's function combined with density functional theory. Be2C monolayer has planar anticonventional bonds and a direct bandgap of 1.53 eV. The Ion of p-type Be2C HP FETs can achieve a remarkable 2767 μA μm-1. All of the device properties of 2D Be2C FETs can exceed the demands of the International Roadmap for Devices and Systems. The excellent properties of Be2C as a 2D p-orbital material with a high hole mobility are discussed from different aspects. Our findings thus illustrate the tremendous potential of 2D Be2C for the next generation of HP and LP electronics applications.

Keywords: density functional theory; electronic properties; p-channel transistors; planar hypercoordinate atoms; two-dimentional materials.