Serum immunoglobulins and biomarkers of dementia: a population-based study

Alzheimers Res Ther. 2023 Nov 7;15(1):194. doi: 10.1186/s13195-023-01333-3.

Abstract

Background: Inflammation plays a key role in the development of dementia, but its link to early biomarkers, particularly those in plasma or neuroimaging, remains elusive. This study aimed to investigate the association between serum immunoglobulins and biomarkers of dementia.

Methods: Between 1997 and 2009, serum immunoglobulins (IgA, IgG and IgM) were measured in dementia-free participants of the population-based Rotterdam Study. A random subset of participants had assessment of biomarkers in plasma (total tau (t-tau), neurofilament light chain (NfL), amyloid-β40 (Aβ-40), amyloid-β42 (Aβ-42), while another subset of participants underwent neuroimaging to quantify brain volume, white matter structural integrity and markers of cerebral small vessel disease. Linear regression models were constructed to determine cross-sectional associations between IgA, IgG, IgM and biomarkers of dementia, with adjustment for potential confounders. Multiple testing correction was applied using the false discovery rate. As a sensitivity analysis, we re-ran the models for participants within the reference range of immunoglobulins, excluding those using immunomodulating drugs, and conducted a stratified analysis by APOE-ε4 carriership and sex.

Results: Of 8,768 participants with serum immunoglobulins, 3,455 participants (65.8 years [interquartile range (IQR): 61.5-72.0], 57.2% female) had plasma biomarkers available and 3,139 participants (57.4 years [IQR: 52.7-60.7], 54.4% female) had neuroimaging data. Overall, no associations between serum immunoglobulins and biomarkers of dementia remained significant after correction for multiple testing. However, several suggestive associations were noted: higher serum IgA levels concurred with lower plasma levels of Aβ-42 (standardized adjusted mean difference: -0.015 [95% confidence interval (CI): -0.029--0.002], p = 2.8 × 10-2), and a lower total brain volume, mainly driven by less gray matter (-0.027 [-0.046--0.008], p = 6.0 × 10-3) and more white matter hyperintensities (0.047 [0.016 - 0.077], p = 3.0 × 10-3). In sensitivity analyses, higher IgM was linked to lower t-tau, Aβ-40, and Aβ-42, but also a loss of white matter microstructural integrity. Stratified analyses indicate that these associations potentially differ between carriers and non-carriers of the APOE-ε4 allele and men and women.

Conclusions: While associations between serum immunoglobulins and early markers of dementia could not be established in this population-based sample, it may be valuable to consider factors such as APOE-ε4 allele carriership and sex in future investigations.

Keywords: Biomarkers; Dementia; Immunoglobulins; Neuroimaging; Population-based.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease*
  • Amyloid
  • Amyloid beta-Peptides
  • Apolipoprotein E4
  • Apolipoproteins E
  • Biomarkers
  • Cross-Sectional Studies
  • Female
  • Humans
  • Immunoglobulin A
  • Immunoglobulin G
  • Immunoglobulin M
  • Male
  • tau Proteins

Substances

  • Amyloid beta-Peptides
  • tau Proteins
  • Amyloid
  • Biomarkers
  • Apolipoproteins E
  • Immunoglobulin A
  • Immunoglobulin G
  • Immunoglobulin M
  • Apolipoprotein E4

Grants and funding