Sensors Based on Tin and Indium Oxides for the Determination of Acetone in Human Breath

ACS Omega. 2023 Oct 18;8(43):40078-40086. doi: 10.1021/acsomega.3c02125. eCollection 2023 Oct 31.

Abstract

The properties of planar sensors based on tin dioxide and indium oxide used for the determination of acetone vapors have been studied. Sensors based on synthesized SnO2 and In2O3 nanopowders showed high sensitivity to low concentrations of acetone in a humid environment which simulates human exhalation. The addition of a small amount of AuIII ions to hydroxide sols significantly increases the threshold sensitivity and the sensor response in a wide range of acetone concentrations. In2O3-Au sensors have the maximum sensitivity at an operating temperature of 325 °C. The In2O3-Au-sensors reliably record the change in acetone concentration in the concentration range from a minimum of 0.1 to 5 ppm with high accuracy, which is necessary for rapid diagnostics of the condition of patients with diabetes (1.8-5.0 ppm). The high sensitivity of the obtained sensors is explained by the structural features and the surface conditions of oxides and gold nanoparticles, which depend on the sample synthesis conditions.