Mesenchymal stem cell-regulated miRNA-mRNA landscape in acute-on-chronic liver failure

Genomics. 2023 Nov;115(6):110737. doi: 10.1016/j.ygeno.2023.110737. Epub 2023 Nov 4.

Abstract

Background: Acute-on-chronic liver failure (ACLF) is a major challenge in the field of hepatology. While mesenchymal stem cell (MSC) therapy can improve the prognosis of patients with ACLF, the molecular mechanisms through which MSCs attenuate ACLF remain poorly understood. We performed global miRNA and mRNA expression profiling via next-generation sequencing of liver tissues from MSC-treated ACLF mice to identify important signaling pathways and major factors implicated in ACLF alleviation by MSCs.

Methods: Carbon tetrachloride-induced ACLF mice were treated with saline or mouse bone marrow-derived MSCs. Mouse livers were subjected to miRNA and mRNA sequencing. Related signal transduction pathways were obtained through Gene Set Enrichment Analysis. Functional enrichment, protein-protein interaction, and immune infiltration analyses were performed for the differentially expressed miRNA target genes (DETs). Hub miRNA and mRNA associated with liver injury were analyzed using LASSO regression. The expression levels of hub genes were subjected to Pearson's correlation analysis and verified using RT-qPCR. The biological functions of hub genes were verified in vitro.

Results: The tricarboxylic acid cycle and peroxisome proliferator-activated receptor pathways were activated in the MSC-treated groups. The proportions of liver-infiltrating NK resting cells, M2 macrophages, follicular helper T cells, and other immune cells were altered after MSC treatment. The expression levels of six miRNAs and 10 transcripts correlated with the degree of liver injury. miR-27a-5p was downregulated in the mouse liver after MSC treatment, while its target gene E2f2 was upregulated. miR-27a-5p inhibited E2F2 expression, suppressed G1/S phase transition and proliferation of hepatocytes, in addition to promoting their apoptosis.

Conclusions: This is the first comprehensive analysis of miRNA and mRNA expression in the liver tissue of ACLF mice after MSC treatment. The results revealed global changes in hepatic pathways and immune subpopulations. The miR-27a-5p/E2F2 axis emerged as a central regulator of the MSC-induced attenuation of ACLF. The current findings improve our understanding of the molecular mechanisms through which MSCs alleviate ACLF.

Keywords: ACLF; Acute-on-chronic liver failure; Immune cell subsets; MSC; Mesenchymal stem cell; Transcriptomics; miRNA; miRNA-mRNA network.

MeSH terms

  • Acute-On-Chronic Liver Failure* / genetics
  • Acute-On-Chronic Liver Failure* / metabolism
  • Acute-On-Chronic Liver Failure* / therapy
  • Animals
  • Humans
  • Mesenchymal Stem Cells* / metabolism
  • Mice
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism

Substances

  • MicroRNAs
  • RNA, Messenger