Operator Growth in Open Quantum Systems

Phys Rev Lett. 2023 Oct 20;131(16):160402. doi: 10.1103/PhysRevLett.131.160402.

Abstract

The spreading of quantum information in closed systems, often termed scrambling, is a hallmark of many-body quantum dynamics. In open systems, scrambling competes with noise, errors, and decoherence. Here, we provide a universal framework that describes the scrambling of quantum information in open systems: we predict that the effect of open-system dynamics is fundamentally controlled by operator size distributions and independent of the microscopic error mechanism. This framework allows us to demonstrate that open quantum systems exhibit universal classes of information dynamics that fundamentally differ from their unitary counterparts. Implications for the Loschmidt echo, nuclear magnetic resonance experiments, and the classical simulability of open quantum dynamics will be discussed.