Shifting climatic responses of tree rings and NDVI along environmental gradients

Sci Total Environ. 2024 Jan 15:908:168275. doi: 10.1016/j.scitotenv.2023.168275. Epub 2023 Nov 3.

Abstract

Variations in the growth of aboveground biomass compartments such as tree stem and foliage significantly influence the carbon cycle of forest ecosystems. Yet the patterns of climate-driven responses of stem and foliage and their modulating factors remain poorly understood. In this study, we investigate the climatic response of Norway spruce (Picea abies) at 138 sites covering wide spatial and site fertility gradients in temperate forests in Central Europe. To characterize the annual growth rate of stem biomass and seasonal canopy vigor, we used tree-ring chronologies and time-series of NDVI derived from Landsat imagery. We calculated correlations of tree-ring width and NDVI with mean growing season temperature and standardized precipitation evapotranspiration index (SPEI). We evaluated how these climate responses varied with aridity index, soil category, stand age, and topographical factors. The results show that the climate-growth responses of tree rings shift from positive to negative for SPEI and from negative to positive for temperature from dry (warm) to wet (cold) areas. By contrast, NDVI revealed a negative response to temperature across the entire climatic gradient. The negative response of NDVI to temperature likely results from drought effects in warm areas and supporting effects of cloudy conditions on foliage greenness in wet areas. Contrary to NDVI, climate responses of tree rings differed according to stand age and were unaffected by local topographical features and soil conditions. Our findings demonstrate that the decoupling of stem and foliage climatic responses may result from their different climatic limitation along environmental gradients. These results imply that in temperate forest ecosystems, the canopy vigor may show different trends compared to stem growth under ongoing climate change.

Keywords: Biomass compartments; Canopy vigor; Climate-growth relationship; Picea abies; Remote sensing; Tree-ring width.

MeSH terms

  • Climate Change
  • Droughts
  • Ecosystem*
  • Europe
  • Forests
  • Picea*
  • Soil

Substances

  • Soil