Genome-wide regulation of Pol II, FACT, and Spt6 occupancies by RSC in Saccharomyces cerevisiae

Gene. 2024 Jan 30:893:147959. doi: 10.1016/j.gene.2023.147959. Epub 2023 Nov 3.

Abstract

RSC (remodels the structure of chromatin) is an essential ATP-dependent chromatin remodeling complex in Saccharomyces cerevisiae. RSC utilizes its ATPase subunit, Sth1, to slide or remove nucleosomes. RSC has been shown to regulate the width of the nucleosome-depleted regions (NDRs) by sliding the flanking nucleosomes away from NDRs. As such, when RSC is depleted, nucleosomes encroach NDRs, leading to transcription initiation defects. In this study, we examined the effects of the catalytic-dead Sth1 on transcription and compared them to those observed during acute and rapid Sth1 depletion by auxin-induced degron strategy. We found that rapid depletion of Sth1 reduces recruitment of TBP and Pol II in highly transcribed genes, as would be expected considering its role in regulating chromatin structure at promoters. In contrast, cells harboring the catalytic-dead Sth1 (sth1-K501R) exhibited a severe reduction in TBP binding, but, surprisingly, also displayed a substantial accumulation in Pol II occupancies within coding regions. The Pol II occupancies further increased upon depleting endogenous Sth1 in the catalytic-dead mutant, suggesting that the inactive Sth1 contributes to Pol II accumulation in coding regions. Notwithstanding the Pol II increase, the ORF occupancies of histone chaperones, FACT and Spt6 were significantly reduced in the mutant. These results suggest a potential role for RSC in recruiting/retaining these chaperones in coding regions. Pol II accumulation despite substantial reductions in TBP, FACT, and Spt6 occupancies in the catalytic-dead mutant could indicate severe transcription elongation and termination defects. Such defects would be consistent with studies showing that RSC is recruited to coding regions in a transcription-dependent manner. Thus, these findings imply a role for RSC in transcription elongation and termination processes, in addition to its established role in transcription initiation.

Keywords: Catalytic-dead; Chromatin remodeling; Histone chaperone; Preinitiation complex (PIC); RSC; Spt16; Spt6; TBP; Transcription elongation; Transcription initiation.

MeSH terms

  • Chromatin / genetics
  • Chromatin / metabolism
  • DNA-Binding Proteins / genetics
  • High Mobility Group Proteins / genetics
  • Nucleosomes / genetics
  • Nucleosomes / metabolism
  • RNA Polymerase II / genetics
  • RNA Polymerase II / metabolism
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism
  • Transcription Factors / metabolism
  • Transcription, Genetic
  • Transcriptional Elongation Factors / genetics

Substances

  • Chromatin
  • DNA-Binding Proteins
  • FACT protein, S cerevisiae
  • High Mobility Group Proteins
  • Nucleosomes
  • RNA Polymerase II
  • Saccharomyces cerevisiae Proteins
  • Transcription Factors
  • Transcriptional Elongation Factors
  • SPT6 protein, S cerevisiae