Overexpression of the Chemosensory Protein CSP7 Gene Contributed to Lambda-Cyhalothrin Resistance in the Bird Cherry-Oat Aphid Rhopalosiphum padi

J Agric Food Chem. 2023 Nov 3. doi: 10.1021/acs.jafc.3c05100. Online ahead of print.

Abstract

Lambda-cyhalothrin is one of the most important pyrethroids used for controlling wheat aphids. Extensive spraying of lambda-cyhalothrin has led to the development of high resistance to this pyrethroid inRhopalosiphum padi. The mechanisms of resistance are complex and not fully understood. In this study, we found that a laboratory-selected strain of R. padi showed extremely high resistance to lambda-cyhalothrin and cross-resistance to bifenthrin and deltamethrin. The expression level of RpCSP7 was significantly elevated in the resistant strain compared to that in the susceptible strain. Knockdown of RpCSP7 increased the susceptibility of R. padi to lambda-cyhalothrin, whereas the susceptibility to bifenthrin and deltamethrin was not significantly changed. The recombinant RpCSP7 displayed a high affinity for lambda-cyhalothrin but no affinities to bifenthrin and deltamethrin. These findings suggest that the overexpression of RpCSP7 contributes to the resistance of R. padi to lambda-cyhalothrin. This study provides valuable insights into CSP-mediated insecticide resistance in insects.

Keywords: Rhopalosiphum padi; chemosensory protein; insecticide resistance; lambda-cyhalothrin; molecular docking.