Genetic insights into obesity: in silico identification of pathogenic SNPs in MBOAT4 gene and their structural molecular dynamics consequences

J Biomol Struct Dyn. 2023 Nov 3:1-17. doi: 10.1080/07391102.2023.2274970. Online ahead of print.

Abstract

Membrane Bound O-Acyltransferase Domain-Containing 4 (MBOAT4) protein catalyzes ghrelin acylation, leading to prominent ghrelin activity, hence characterizing its role as an anti-obesity target. We extracted 625 exonic SNPs from the ENSEMBL database and one phenotype-based missense mutation associated with obesity (A46T) from the HGMD (Human Gene Mutation Database). These were differentiated on deleterious missense SNPs of the MBOAT4 gene through MAF (minor allele frequency: <0.01) cut-off criteria in relation to some bioinformatics-based supervised machine learning tools. We found 8 rare-coding and harmful missense SNPs. The consensus classifier (PredictSNP) tool predicted that the SNP (G57S, C: rs561065025) was the most pathogenic. Several trained in silico algorithms have predicted decreased protein stability [ΔΔG (kcal/mol)] function in the presence of these rare-coding pathogenic mutations in the MBOAT4 gene. Then, a stereochemical quality check (i.e. validation and assessment) of the 3D model was performed, followed by a blind cavity docking approach, used to search for druggable cavities and molecular interactions with citrus flavonoids of the Rutaceae family, ranked with energetic estimations. Significant interactions with Phloretin 3',5'-Di-C-Glucoside were also observed at R304, W306, N307, A311, L314 and H338 with (iGEMDOCK: -95.82 kcal/mol and AutoDock: -7.80 kcal/mol). The RMSD values and other variables of MD simulation analyses on this protein further validated its significant interactions with the above flavonoids. The MBOAT4 gene and its molecular interactions could serve as an interventional future anti-obesity target. The current study's findings will benefit future prospects for large population-based studies and drug development, particularly for generating personalized medicine.Communicated by Ramaswamy H. Sarma.

Keywords: 5'-Di-C-Glucoside; Anti-obesity; MD simulation; Rutaceae; citrus flavonoids; ghrelin; membrane bound O-Acyltransferase domain containing 4 (MBOAT4); phloretin 3'; rMSD.