Hypoxia-sensing VGLL4 promotes LDHA-driven lactate production to ameliorate neuronal dysfunction in a cellular model relevant to Alzheimer's disease

FASEB J. 2023 Dec;37(12):e23290. doi: 10.1096/fj.202301173RRR.

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease where abnormal amyloidogenic processing of amyloid-β precursor protein (APP) occurs and has been linked to neuronal dysfunction. Hypometabolism of glucose in the brain can lead to synaptic loss and neuronal death, which in turn exacerbates energy deficiency and amyloid-β peptide (Aβ) accumulation. Lactate produced by anaerobic glycolysis serves as an energy substrate supporting neuronal function and facilitating neuronal repair. Vestigial-like family member 4 (VGLL4) has been recognized as a key regulator of the hypoxia-sensing pathway. However, the role of VGLL4 in AD remains unexplored. Here, we reported that the expression of VGLL4 protein was significantly decreased in the brain tissue of AD model mice and AD model cells. We further found that overexpression of VGLL4 reduced APP amyloidogenic processing and ameliorated neuronal synaptic damage. Notably, we identified a compromised hypoxia-sensitive capability of LDHA regulated by VGLL4 in the context of AD. Upregulation of VGLL4 increased the response of LDHA to hypoxia and enhanced the expression levels of LDHA and lactate by inhibiting the ubiquitination and degradation of LDHA. Furthermore, the inhibition of lactate production by using sodium oxamate, an inhibitor of LDHA, suppressed the neuroprotective function of VGLL4 by increasing APP amyloidogenic processing. Taken together, our findings demonstrate that VGLL4 exerts a neuroprotective effect by upregulating LDHA expression and consequently promoting lactate production. Thus, this study suggests that VGLL4 may be a novel player involved in molecular mechanisms relevant for ameliorating neurodegeneration.

Keywords: Alzheimer's disease; LDHA; VGLL4; lactate; β-amyloid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease* / metabolism
  • Amyloid beta-Peptides / metabolism
  • Amyloid beta-Protein Precursor / metabolism
  • Animals
  • Hypoxia
  • Lactic Acid
  • Mice
  • Mice, Transgenic
  • Neurodegenerative Diseases*
  • Transcription Factors

Substances

  • Lactic Acid
  • Amyloid beta-Protein Precursor
  • Amyloid beta-Peptides
  • VGLL4 protein, mouse
  • Transcription Factors